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Using random number generators in Monte Carlo simulations
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One of the standard tests for Monte Carlo algorithms and for testing random number generators is the
two-dimensional Ising model. We show that at least in the present case, where we study the two-state clock
model, good random number generators can give inconsistent values for the critical temperature.
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There has been rapid growth in the use of Monte CarldHereJ is a coupling constanhy, is a local field, and, is an
technigues in several areas following the development ofingle associated with the sike The parameten sets the
more powerful computers. Of course, with this developmensymmetry of the Hamiltoniam= 0 is the pure planar rotator
came the necessity of developing routines for more sophistimodel,n=1 corresponds to an external field=2 haszZ,
cated random number generat¢RNG'’s). Long sequences symmetry, which corresponds to the Ising universality class
of random numbers are required in numerous applications, ifor any h,#0, and so on. We have determined the critical
particular statistical mechanics and particle physics. Montegemperaturd, and the critical exponents fdr,= 1. Surpris-
Carlo simulations are subject to statistical and systematiingly, we obtained different values far, depending on the
errors[1,2]. Statistical errors aressserious in the sense that RNG used. The results seem to be independent of the MC
one can control the error bars associated with each measurgtgorithm.
ment. However, poor random number sequences lead to sys- All the simulations were carried out on an IBM SP]
tematic errors in the Monte Carlo simulatioffs3], which,  parallel machine and in a three 200 MHz Pentium PRO clus-
in many cases, are impossible to evaluate. Even using higher [6]. We have used lattices of site=4, 6, 8, 10, 16, 20,
quality RNG’s we can get into trouble depending on the40, 60, and 100 in order to make a reasonable finite size
Monte Carlo method used, e.g., a single-spin-flip algorithmscaling analysis. Steps in temperature were of side
such as Metropolis or a cluster algorithm such as Swendser=0.01 (temperature is measured in units &fkg). Each
Wang or Wolff embedding. Ferrenberg al. [1], studying  point is the result of averages over°:§2.5x 1) indepen-
the Ising model where exact results are known, have showgent configurations. Close to the maxima of the specific heat
that high-quality RNG’s may lead to systematic errors forand susceptibilities we have used 2.50° configurations, so
some algorithms due to the existence of unexpected larggat the calculated error bars were never greater than 0.5%
correlations. In this work we have used two different Montefgr the hybrid algorithm discussed beldaircles in Fig. 2.
Carlo (MC) algorithms and two distinct RNG's to study the For the location of the extrema of susceptibility and specific
continuous clock model, witm=2 (CM2), defined by the heat we have used the single histogram technique, which

Hamiltonian[4] allows us to extract the maximum information from our data
[7].
We have used an algorithm that is a combination of the
H=—Jz cog 6, — 6,)—h z cogné,). (1) cluster Wolff embedding with Metropolis realignments,
B oo ng ! which was successfully used to study the three-dimensional
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FIG. 2. Shown from top to bottom are the size dependence of
FIG. 1. Magnetic susceptibility fo. =20. Empty and filled the location of the extrema for the magnetic susceptibiltity, the
symbols correpond t@An2 and RANLUX, respectively. Circles are specific heat, and Binder’s fourth-order cumulant. In all cases we
for hybrid and squares for Metropolis algorithms. used therAaN2 random number generator.
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1.75 T T T TABLE |. Estimated critical temperatures and exponents using
RAN2 and RANLUX.
&
S 165 Method T. a B 0%
()
5 RAN2 1.5295) 0.054) 0.134) 1.759)
g ] RANLUX 1.491(6) 0.003) 0.14(6) 1.717)
g. .55 exact 0 0.125 1.75
I
1.45 . L . some particular universality class. Then we can assume that
0.00 0.10 0.20

we will get the correct critical exponents at the critical tem-
perature. Having this in mind, we also estimated the critical
- Xponents using bothan2 andRANLUX. The results are pre-
RANFLISX' 3. Symbols are the same as in Fig. 1. Here we have usegented in Table I. They clearly show that both RNG’s give
' the correct Ising exponents in spite of the estimated critical
Heisenberg mode[8] and also the two-dimensionalY temperatures being different by about 2%. This striking be-
model [9]. We have also calculated some points using thd'2VI0r Was not reported in the extensive work by Ferrenberg
" . . ~ .. etal in Ref. [1], where they studied the Ising model. The
Metropolis algorithm. Results for the magnetic susceptibility act that CM2 is a continuous model seems to blay an im-
are presented in Fig. 1 for comparison. For each of the Mé o pay.
methods we have used two distinct RNG'’s: a muItiplicativeport"".nt ro_Ie. We do not knovv_ the cause of this behavior, but
congruential(RAN2) [10] and RANLUX, which uses the algo- cirstgglylg |tF<;(?rr2re]Eefrorgl a different source from that sug-
rithm developed by Lcher[11] based on an algorithm intro- 9 y e et al. .
duced by Marsaglia and Zamda2] and implemented by In conclusion, we performed a careful Monte Carlo simu-
Jameg 13]. RANLUX has fouruxury levels and we have used lation of the continuous clock model with, symmetry that

the fourth level, which has passed all known statistical test® N the same universality class as the Ising model where the
[13]. critical exponents are exactly known. We used two different

It is well known that CM2 has a second-order phase trar]_random number generators. Although, we found the correct

. : 0
sition [4]. However, the value of the critical temperature is ?;L?r?(;]ienn:ﬁeugmﬁ; aﬁc:g:ngeerr]:trjrtgr\S/\}h?cglzgfmpzrt]gybgfinz dg) \évr?_s
not known. From Fig. 1 it is already evident that the critical dent of the used MontF()a Carlo ’al orithm. The problem pwe
temperature will be estimated differently when using differ- 9 ' P

ent RNG's. Figures 2 and 3 show the size dependence of thhlz"’we found with the RNG’s raises concern about other gen-

locations of the extrema of different thermodynamic quami_erators. -.”:e dkmd of flncon3|s|tency W? have loblservr?_d IMposes
ties when usingRAN2 and RANLUX, respectively. Individu- ahpto_'ie_ntlat angerh (t)r ts'n][uRa"\tl'gf'S' r|' parltlt_:u ar tollslmearjs
ally, each simulation seems to be reliable. However, the ha It |sgo denouq[_ ° etsh ) sltz_nylln sing mo_tesas IS
give different values folf .. The difference between the two € standard practice in the simulational community.
estimated critical temperatures is about 2%, much higher

than the intrinsic errors from the MC method. The question This work was supported in part by CNPg and
of deciding which is the correct one is not an easy taskFAPEMIG. We are grateful to Dr. J. K. L. da Silva, J. F.
Suppose, for example, that we expect the system to be idunior, and M. E. Gougfor reading this manuscript.

1L

[1] Alan M. Ferrenberg, D. P. Laudau, and Y. Joanna Wong, Phys. 43, 6087(1991); A. M. Ferrenberg and D. P. Landaibjd. 44,

Rev. Lett.23, 3382(1992, and references therein. 5081 (1991).
[2] Alan M. Ferrenberg, D. P. Laudau, and K. Binder, J. Stat. [8] H. G. Evertz and D. P. Landau, Phys. Rev.58, 12 302
Phys.63, 867 (199)). (1996.
[3] M. N. Barber, R. B. Pearson, D. Toussaint, and J. L. Richard- [9] B. V. Costa, J. E. R. Costa, and D. P. Landau, J. Appl. Phys.
son, Phys. Rev. B2, 1720(1985. 81, 5748(1997; J. E. R. Costa and B. V. Costa, Phys. Rev. B
[4] J. V. Jose L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, 54, 994 (1996.
Phys. Rev. B16, 1217(1977, and references therein. [10] Numerical Recipes in @nd ed., edited by William H. Press,
[5] Centro Nacional de Processamento de Alto Desempenho para Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
Minas Gerais & Centro Oestéd CENAPAD-MG/CO Brazil. nery (Cambridge University Press, Cambridge, 1992 282.
[6] Laborat@io de Simulgéo, Departamento de’§ica, Univer-  [11] Martin Liicher, Comput. Phys. Commum9, 100 (1994.
sidade Federal de Minas Gerais, Brazil. [12] G. Marsaglia and A. Zaman, Ann. Appl. Prah.462 (199J).

[7] P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B13] F. James, Comput. Phys. Comm9, 111 (1994).



